This function adds uncorrelated Gaussian noise to the logarithm QTS using an exponential covariance function.
Arguments
- n
An integer specifying how many QTS should be generated.
- mean_qts
An object of class
qts
specifying the mean QTS.- alpha
A positive scalar specifying the variance of each component of the log-QTS. Defaults to
0.01
.- beta
A positive scalar specifying the exponential weight. Defaults to
0.001
.
Value
A list of n
objects of class qts
with added noise as
specified by parameters alpha
and beta
.
Details
See exp_cov_function
for details about the roles of
alpha
and beta
in the definition of the covariance operator.
Examples
rnorm_qts(1, vespa64$igp[[1]])
#> [[1]]
#> # A tibble: 101 × 5
#> time w x y z
#> <int> <dec:.5!> <dec:.5!> <dec:.5!> <dec:.5!>
#> 1 0 0.98741 -0.09893 0.09124 -0.08312
#> 2 1 0.98698 -0.10397 0.08881 -0.08466
#> 3 2 0.98748 -0.10539 0.08356 -0.08242
#> 4 3 0.98638 -0.11948 0.07363 -0.08578
#> 5 4 0.98630 -0.12358 0.06865 -0.08498
#> 6 5 0.98699 -0.12099 0.06539 -0.08333
#> 7 6 0.98839 -0.11697 0.06529 -0.07175
#> 8 7 0.98716 -0.12607 0.06561 -0.07287
#> 9 8 0.98673 -0.12654 0.06605 -0.07739
#> 10 9 0.98706 -0.12486 0.05998 -0.08080
#> # ℹ 91 more rows
#>
#> attr(,"class")
#> [1] "qts_sample" "list"