A collection of functions that implements the QTS sample class. It currently
provides the as_qts_sample()
function for QTS sample coercion of lists of
qts
objects, the is_qts_sample()
function for checking if an object
is a QTS sample and the subset operator.
Arguments
- x
A list of
tibble::tibble
s, each of which with columnstime
,w
,x
,y
andz
.- i
A valid expression to subset observations from a QTS sample.
- simplify
A boolean value specifying whether the resulting subset should be turned into a single QTS in case the subset is of size 1. Defaults to
FALSE
.
Details
A QTS sample is a collection of quaternion time series (QTS), each of which
is stored as a tibble::tibble
with 5 columns:
time
: A first column specifying the time points at which quaternions were collected;w
: A second column specifying the first coordinate of the collected quaternions;x
: A third column specifying the second coordinate of the collected quaternions;y
: A fourth column specifying the third coordinate of the collected quaternions;z
: A fifth column specifying the fourth coordinate of the collected quaternions.
Examples
x <- vespa64$igp
y <- as_qts_sample(x)
is_qts_sample(x)
#> [1] TRUE
is_qts_sample(y)
#> [1] TRUE
x[1]
#> [[1]]
#> # A tibble: 101 × 5
#> time w x y z
#> <int> <dec:.5!> <dec:.5!> <dec:.5!> <dec:.5!>
#> 1 0 0.99427 0.07973 0.06988 0.01334
#> 2 1 0.99483 0.07457 0.06763 0.01313
#> 3 2 0.99542 0.06931 0.06457 0.01269
#> 4 3 0.99602 0.06398 0.06091 0.01184
#> 5 4 0.99652 0.05949 0.05742 0.01070
#> 6 5 0.99694 0.05572 0.05403 0.00932
#> 7 6 0.99729 0.05275 0.05079 0.00772
#> 8 7 0.99757 0.05056 0.04761 0.00583
#> 9 8 0.99782 0.04883 0.04430 0.00366
#> 10 9 0.99805 0.04730 0.04071 0.00125
#> # ℹ 91 more rows
#>
#> attr(,"class")
#> [1] "qts_sample" "list"
x[1, simplify = TRUE]
#> # A tibble: 101 × 5
#> time w x y z
#> <int> <dec:.5!> <dec:.5!> <dec:.5!> <dec:.5!>
#> 1 0 0.99427 0.07973 0.06988 0.01334
#> 2 1 0.99483 0.07457 0.06763 0.01313
#> 3 2 0.99542 0.06931 0.06457 0.01269
#> 4 3 0.99602 0.06398 0.06091 0.01184
#> 5 4 0.99652 0.05949 0.05742 0.01070
#> 6 5 0.99694 0.05572 0.05403 0.00932
#> 7 6 0.99729 0.05275 0.05079 0.00772
#> 8 7 0.99757 0.05056 0.04761 0.00583
#> 9 8 0.99782 0.04883 0.04430 0.00366
#> 10 9 0.99805 0.04730 0.04071 0.00125
#> # ℹ 91 more rows