Class for Lie groups. In this class, point_type
('vector'
or
'matrix'
) will be used to describe the format of the points on the Lie
group. If point_type
is 'vector'
, the format of the inputs is
dimension
, where dimension
is the dimension of the Lie group. If
point_type
is 'matrix'
, the format of the inputs is c(n, n)
where n
is the parameter of \(\mathrm{GL}(n)\) e.g. the amount of rows and
columns of the matrix.
Super classes
rgeomstats::PythonClass
-> rgeomstats::Manifold
-> LieGroup
Public fields
lie_algebra
An object of class
MatrixLieAlgebra
orNULL
representing the tangent space at the identity.left_canonical_metric
An object of class
InvariantMetric
representing the left invariant metric that corresponds to the Euclidean inner product at the identity.right_canonical_metric
An object of class
InvariantMetric
representing the left invariant metric that corresponds to the Euclidean inner product at the identity.metrics
A list of objects of class
RiemannianMetric
.
Methods
Inherited methods
rgeomstats::PythonClass$get_python_class()
rgeomstats::PythonClass$set_python_class()
rgeomstats::Manifold$belongs()
rgeomstats::Manifold$is_tangent()
rgeomstats::Manifold$random_point()
rgeomstats::Manifold$random_tangent_vec()
rgeomstats::Manifold$regularize()
rgeomstats::Manifold$set_metric()
rgeomstats::Manifold$to_tangent()
Method new()
The LieGroup
class constructor.
Usage
LieGroup$new(dim, shape, lie_algebra = NULL, ..., py_cls = NULL)
Arguments
dim
An integer value specifying the dimension of the manifold.
shape
An integer vector specifying the shape of one element of the Lie group.
lie_algebra
An object of class
MatrixLieAlgebra
orNULL
specifying the tangent space at the identity....
Extra arguments to be passed to parent class constructors. See
Manifold
class.py_cls
A Python object of class
LieGroup
. Defaults toNULL
in which case it is instantiated on the fly using the other input arguments.
Method exp()
Exponentiates a left-invariant vector field from a base point.
Arguments
tangent_vec
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) specifying one or more tangent vectors at corresponding base points.
base_point
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) specifying one or more base points on the manifold. Defaults to identity if
NULL
.
Details
The vector input is not an element of the Lie algebra, but of
the tangent space at base_point
: if \(g\) denotes base_point
,
\(v\) the tangent vector, and \(V = g^{-1} v\) the associated Lie
algebra vector, then $$\exp(v, g) = \mathrm{mul}(g, \exp(V))$$.
Therefore, the Lie exponential is obtained when base_point
is NULL
,
or the identity.
Returns
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) storing the group exponential of the input tangent vector(s).
Examples
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$exp(rep(0, 3))
}
Method exp_from_identity()
Compute the group exponential of tangent vector from the identity.
Arguments
tangent_vec
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) specifying one or more tangent vectors at corresponding base points.
Returns
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) storing the group exponential of the input tangent vector(s).
Examples
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$exp_from_identity(rep(0, 3))
}
Method exp_not_from_identity()
Calculate the group exponential at base_point
.
Arguments
tangent_vec
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) specifying one or more tangent vectors at corresponding base points.
base_point
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) specifying one or more base points on the manifold. Defaults to identity if
NULL
.
Returns
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) storing the group exponential of the input tangent vector(s).
Examples
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$exp_not_from_identity(rep(0, 3), rep(0, 3))
}
Method log()
Computes a left-invariant vector field bringing base_point
to point
.
Arguments
point
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) specifying one or more points on the manifold.
base_point
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) specifying one or more base points on the manifold. Defaults to identity if
NULL
.
Details
The output is a vector of the tangent space at base_point
, so
not a Lie algebra element if base_point
is not the identity.
Furthermore, denoting point
by \(g\) and base_point
by \(h\),
the output satisfies $$g = \exp(\log(g, h), h)$$.
Returns
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) storing the group logarithm of the input point(s).
Examples
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$log(rep(0, 3))
}
Method log_from_identity()
Computes the group logarithm of point
from the identity.
Arguments
point
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) specifying one or more points on the manifold.
Returns
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) storing the group logarithm of the input point(s).
Examples
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$log_from_identity(rep(0, 3))
}
Method log_not_from_identity()
Computes the group logarithm at base_point
.
Arguments
point
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) specifying one or more points on the manifold.
base_point
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) specifying one or more base points on the manifold. Defaults to identity if
NULL
.
Returns
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) storing the group logarithm of the input point(s).
Examples
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$log_not_from_identity(rep(0, 3), rep(0, 3))
}
Method get_identity()
Gets the identity of the group.
Returns
A numeric array of shape \(\{ \mathrm{dim}, [n \times n] \}\) storing the identity of the Lie group.
Examples
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$get_identity()
}
Method lie_bracket()
Computes the lie bracket of two tangent vectors.
Arguments
tangent_vector_a
A numeric array of shape \([\dots \times n \times n]\) specifying one or more tangent vectors at corresponding base points.
tangent_vector_b
A numeric array of shape \([\dots \times n \times n]\) specifying one or more tangent vectors at corresponding base points.
base_point
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) specifying one or more base points on the manifold. Defaults to identity if
NULL
.
Details
For matrix Lie groups with tangent vectors \(A\) and \(B\) at the same base point \(P\), this is given by (translate to identity, compute commutator, go back): $$[A,B] = A_P^{-1}B - B_P^{-1}A$$.
Returns
A numeric array of shape \([\dots \times n \times n]\) storing the Lie bracket of the two input tangent vectors.
Examples
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$lie_bracket(diag(0, 3), diag(0, 3))
}
Method tangent_translation_map()
Computes the push-forward map by the left/right translation.
Arguments
point
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) specifying one or more points on the manifold.
left_or_right
A character string specifying whether to compute the map for the left or right translation. Choices are
"left"
or"right
. Defaults to"left"
.inverse
A boolean specifying whether to inverse the Jacobian matrix. If set to
TRUE
, the push forward by the translation by the inverse of the point is returned. Defaults toFALSE
.
Details
Computes the push-forward map of the left/right translation by
the point. It corresponds to the tangent map, or differential of the
group multiplication by the point or its inverse. For groups with a
vector representation, it is only implemented at identity, but it can
be used at other points with inverse = TRUE
. This method wraps the
Jacobian translation which actually computes the matrix representation
of the map.
Returns
A function computing the tangent map of the left/right
translation by point
. It can be applied to tangent vectors.
Examples
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$tangent_translation_map(rep(0, 3))
}
Method compose()
Performs function composition corresponding to the Lie group.
Arguments
point_a
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) specifying one or more left factors in the product.
point_b
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) specifying one or more right factors in the product.
Returns
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n
\times n] \}]\) storing the product of point_a
and point_b
along the
first dimension.
Examples
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$compose(rep(0, 3), rep(0, 3))
}
Method jacobian_translation()
Computes the Jacobian of left/right translation by a point.
Arguments
point
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) specifying one or more points on the manifold.
left_or_right
A character string specifying whether to compute the map for the left or right translation. Choices are
"left"
or"right
. Defaults to"left"
.
Returns
A numeric array of shape \([\dots \times \mathrm{dim} \times
\mathrm{dim}]\) storing the Jacobian of the left/right translation by
point
.
Examples
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$jacobian_translation(rep(0, 3))
}
Method inverse()
Computes the inverse law of the Lie group.
Arguments
point
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) specifying one or more points to be inverted.
Returns
A numeric array of shape \([\dots \times \{ \mathrm{dim}, [n \times n] \}]\) storing the inverted points.
Examples
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$inverse(rep(0, 3))
}
Method add_metric()
Adds a metric to the class $metrics
attribute.
Arguments
metric
An object of class
RiemannianMetric
.
Examples
## ------------------------------------------------
## Method `LieGroup$exp`
## ------------------------------------------------
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$exp(rep(0, 3))
}
## ------------------------------------------------
## Method `LieGroup$exp_from_identity`
## ------------------------------------------------
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$exp_from_identity(rep(0, 3))
}
## ------------------------------------------------
## Method `LieGroup$exp_not_from_identity`
## ------------------------------------------------
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$exp_not_from_identity(rep(0, 3), rep(0, 3))
}
## ------------------------------------------------
## Method `LieGroup$log`
## ------------------------------------------------
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$log(rep(0, 3))
}
## ------------------------------------------------
## Method `LieGroup$log_from_identity`
## ------------------------------------------------
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$log_from_identity(rep(0, 3))
}
## ------------------------------------------------
## Method `LieGroup$log_not_from_identity`
## ------------------------------------------------
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$log_not_from_identity(rep(0, 3), rep(0, 3))
}
## ------------------------------------------------
## Method `LieGroup$get_identity`
## ------------------------------------------------
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$get_identity()
}
## ------------------------------------------------
## Method `LieGroup$lie_bracket`
## ------------------------------------------------
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$lie_bracket(diag(0, 3), diag(0, 3))
}
## ------------------------------------------------
## Method `LieGroup$tangent_translation_map`
## ------------------------------------------------
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$tangent_translation_map(rep(0, 3))
}
## ------------------------------------------------
## Method `LieGroup$compose`
## ------------------------------------------------
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$compose(rep(0, 3), rep(0, 3))
}
## ------------------------------------------------
## Method `LieGroup$jacobian_translation`
## ------------------------------------------------
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$jacobian_translation(rep(0, 3))
}
## ------------------------------------------------
## Method `LieGroup$inverse`
## ------------------------------------------------
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3, point_type = "vector")
so3$inverse(rep(0, 3))
}