Skip to contents

An R6::R6Class object implementing the base RiemannianMetric class. This is an abstract class for Riemannian and pseudo-Riemannian metrics which are the associated Levi-Civita connection on the tangent bundle.

Author

Nina Miolane

Super classes

rgeomstats::PythonClass -> rgeomstats::Connection -> RiemannianMetric

Public fields

signature

An integer vector specifying the signature of the metric.

Methods

Inherited methods


Method new()

The RiemannianMetric class constructor.

Usage

RiemannianMetric$new(
  dim,
  shape = NULL,
  signature = NULL,
  default_coords_type = "intrinsic",
  py_cls = NULL
)

Arguments

dim

An integer value specifying the dimension of the manifold.

shape

An integer vector specifying the shape of one element of the manifold. Defaults to NULL.

signature

An integer vector specifying the signature of the metric. Defaults to c(dim, 0L).

default_coords_type

A string specifying the coordinate type. Choices are extrensic or intrinsic. Defaults to intrinsic.

py_cls

A Python object of class RiemannianMetric. Defaults to NULL in which case it is instantiated on the fly using the other input arguments.

Returns

An object of class RiemannianMetric.


Method metric_matrix()

Metric matrix at the tangent space at a base point.

Usage

RiemannianMetric$metric_matrix(base_point = NULL)

Arguments

base_point

A numeric array of shape dim specifying a point on the manifold. Defaults to NULL.

Returns

A numeric array of shape dim x dim storing the inner-product matrix.


Method cometric_matrix()

Inner co-product matrix at the cotangent space at a base point. This represents the cometric matrix, i.e. the inverse of the metric matrix.

Usage

RiemannianMetric$cometric_matrix(base_point = NULL)

Arguments

base_point

A numeric array of shape dim specifying a point on the manifold. Defaults to NULL.

Returns

A numeric array of shape dim x dim storing the inverse of the inner-product matrix.


Method inner_product_derivative_matrix()

Compute derivative of the inner prod matrix at base point.

Usage

RiemannianMetric$inner_product_derivative_matrix(base_point)

Arguments

base_point

A numeric array of shape dim specifying a point on the manifold. Defaults to NULL.

Returns

A numeric array of shape dim x dim storing the derivative of the inverse of the inner-product matrix.


Method inner_product()

Inner product between two tangent vectors at a base point.

Usage

RiemannianMetric$inner_product(tangent_vec_a, tangent_vec_b, base_point)

Arguments

tangent_vec_a

A numeric array of shape dim specifying a tangent vector at base point.

tangent_vec_b

A numeric array of shape dim specifying a tangent vector at base point.

base_point

A numeric array of shape dim specifying a point on the manifold. Defaults to NULL.

Returns

A scalar value representing the inner product between the two input tangent vectors at the input base point.


Method inner_coproduct()

Computes inner coproduct between two cotangent vectors at base point. This is the inner product associated to the cometric matrix.

Usage

RiemannianMetric$inner_coproduct(
  cotangent_vec_a,
  cotangent_vec_b,
  base_point = NULL
)

Arguments

cotangent_vec_a

A numeric array of shape dim specifying a cotangent vector at base point.

cotangent_vec_b

A numeric array of shape dim specifying a cotangent vector at base point.

base_point

A numeric array of shape dim specifying a point on the manifold. Defaults to NULL.

Returns

A scalar value representing the inner coproduct between the two input cotangent vectors at the input base point.


Method hamiltonian()

Computes the Hamiltonian energy associated to the cometric. The Hamiltonian at state \((q, p)\) is defined by $$H(q, p) = \frac{1}{2} \langle p, p \rangle_q,$$ where \(\langle \cdot, \cdot \rangle_q\) is the cometric at \(q\).

Usage

RiemannianMetric$hamiltonian(state)

Arguments

state

A list with two components: (i) a numeric array of shape dim specifying the position which is a point on the manifold and (ii) a numeric array of shape dim specifying the momentum which is a cotangent vector.

Returns

A numeric value representing the Hamiltonian energy at state.


Method squared_norm()

Computes the square of the norm of a vector. Squared norm of a vector associated to the inner product at the tangent space at a base point.

Usage

RiemannianMetric$squared_norm(vector, base_point = NULL)

Arguments

vector

A numeric array of shape dim specifying a vector.

base_point

A numeric array of shape dim specifying a point on the manifold. Defaults to NULL.

Returns

A numeric value representing the squared norm of the input vector.


Method norm()

Computes the norm of a vector associated to the inner product at the tangent space at a base point.

Usage

RiemannianMetric$norm(vector, base_point = NULL)

Arguments

vector

A numeric array of shape dim specifying a vector.

base_point

A numeric array of shape dim specifying a point on the manifold. Defaults to NULL.

Details

This only works for positive-definite Riemannian metrics and inner products.

Returns

A numeric value representing the norm of the input vector.


Method normalize()

Normalizes a tangent vector at a given point.

Usage

RiemannianMetric$normalize(vector, base_point = NULL)

Arguments

vector

A numeric array of shape dim specifying a vector.

base_point

A numeric array of shape dim specifying a point on the manifold. Defaults to NULL.

Returns

A numeric array of shape dim storing the normalized version of the input tangent vector.


Method random_unit_tangent_vec()

Generates a random unit tangent vector at a given point.

Usage

RiemannianMetric$random_unit_tangent_vec(base_point = NULL, n_vectors = 1)

Arguments

base_point

A numeric array of shape dim specifying a point on the manifold. Defaults to NULL.

n_vectors

An integer value specifying the number of vectors to be generated at base_point. For vectorization purposes, n_vectors can be greater than 1 iff base_point corresponds to a single point. Defaults to 1L.

Returns

A numeric array of shape c(n_vectors, dim) storing random unit tangent vectors at base_point.


Method squared_dist()

Squared geodesic distance between two points.

Usage

RiemannianMetric$squared_dist(point_a, point_b, ...)

Arguments

point_a

A numeric array of shape dim on the manifold.

point_b

A numeric array of shape dim on the manifold.

...

Extra parameters to be passed to the $log() method of the parent Connection class.

Returns

A numeric value storing the squared geodesic distance between the two input points.


Method dist()

Geodesic distance between two points.

Usage

RiemannianMetric$dist(point_a, point_b, ...)

Arguments

point_a

A numeric array of shape dim on the manifold.

point_b

A numeric array of shape dim on the manifold.

...

Extra parameters to be passed to the $log() method of the parent Connection class.

Details

It only works for positive definite Riemannian metrics.

Returns

A numeric value storing the geodesic distance between the two input points.


Method dist_broadcast()

Computes the geodesic distance between points.

Usage

RiemannianMetric$dist_broadcast(points_a, points_b)

Arguments

points_a

A numeric array of shape c(n_samples_a, dim) specifying a set of points on the manifold.

points_b

A numeric array of shape c(n_samples_b, dim) specifying a set of points on the manifold.

Details

If n_samples_a == n_samples_b then dist is the element-wise distance result of a point in points_a with the point from points_b of the same index. If n_samples_a != n_samples_b then dist is the result of applying geodesic distance for each point from points_a to all points from points_b.

Returns

A numeric array of shape c(n_samples_a, dim) if n_samples_a == n_samples_b or of shape c(n_samples_a, n_samples_b, dim) if n_samples_a != n_samples_b storing the geodesic distance between points in set A and points in set B.


Method dist_pairwise()

Computes the pairwise distance between points.

Usage

RiemannianMetric$dist_pairwise(points, n_jobs = 1, ...)

Arguments

points

A numeric array of shape c(n_samples, dim) specifying a set of points on the manifold.

n_jobs

An integer value specifying the number of cores for parallel computation. Defaults to 1L.

...

Extra parameters to be passed tothe joblib.Parallel Python class. See joblib documentation for details.

Returns

A numeric matrix of shape c(n_samples, n_samples) storing the pairwise geodesic distances between all the points.


Method diameter()

Computes the diameter of set of points on a manifold.

Usage

RiemannianMetric$diameter(points)

Arguments

points

A numeric array of shape c(n_samples, dim) specifying a set of points on the manifold.

Details

The diameter is the maximum over all pairwise distances.

Returns

A numeric value representing the largest distance between any two points in the input set.


Method closest_neighbor_index()

Finds the closest neighbor to a point among a set of neighbors.

Usage

RiemannianMetric$closest_neighbor_index(point, neighbors)

Arguments

point

A numeric array of shape dim specifying a point on the manifold.

neighbors

A numeric array of shape c(n_neighbors, dim) specifying a set of neighboring points for the input point.

Returns

An integer value representing the index of the neighbor in neighbors that is closest to point.


Method normal_basis()

Normalizes the basis with respect to the metric. This corresponds to a renormalization of each basis vector.

Usage

RiemannianMetric$normal_basis(basis, base_point = NULL)

Arguments

basis

A numeric array of shape c(dim, dim) specifying a basis.

base_point

A numeric array of shape dim specifying a point on the manifold. Defaults to NULL.

Returns

A numeric array of shape c(dim, n, n) storing the normal basis.


Method sectional_curvature()

Computes the sectional curvature.

Usage

RiemannianMetric$sectional_curvature(
  tangent_vec_a,
  tangent_vec_b,
  base_point = NULL
)

Arguments

tangent_vec_a

A numeric array of shape c(n, n) specifying a tangent vector at base_point.

tangent_vec_b

A numeric array of shape c(n, n) specifying a tangent vector at base_point.

base_point

A numeric array of shape dim specifying a point on the manifold. Defaults to NULL.

Details

For two orthonormal tangent vectors \(x\) and \(y\) at a base point, the sectional curvature is defined by $$\langle R(x, y)x, y \rangle = \langle R_x(y), y \rangle.$$ For non-orthonormal vectors, it is $$\langle R(x, y)x, y \rangle / \\|x \wedge y\\|^2.$$ See also https://en.wikipedia.org/wiki/Sectional_curvature.

Returns

A numeric value representing the sectional curvature at base_point.


Method clone()

The objects of this class are cloneable with this method.

Usage

RiemannianMetric$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

if (FALSE) { # reticulate::py_module_available("geomstats")
# mt <- SPDMetricLogEuclidean$new(n = 3)
# mt$metric_matrix()
}
if (FALSE) { # reticulate::py_module_available("geomstats")
# mt <- SPDMetricLogEuclidean$new(n = 3)
# mt$cometric_matrix()
}
if (FALSE) { # reticulate::py_module_available("geomstats")
# mt <- SPDMetricLogEuclidean$new(n = 3)
# mt$inner_product_derivative_matrix()
}
if (FALSE) { # reticulate::py_module_available("geomstats")
mt <- SPDMetricLogEuclidean$new(n = 3)
mt$inner_product(diag(0, 3), diag(1, 3), base_point = diag(1, 3)) 
}
if (FALSE) { # reticulate::py_module_available("geomstats")
# mt <- SPDMetricLogEuclidean$new(n = 3)
# mt$inner_coproduct(diag(0, 3), diag(1, 3), base_point = diag(1, 3))
}
if (FALSE) { # reticulate::py_module_available("geomstats")
# mt <- SPDMetricLogEuclidean$new(n = 3)
# mt$hamiltonian()
}
if (FALSE) { # reticulate::py_module_available("geomstats")
mt <- SPDMetricLogEuclidean$new(n = 3)
mt$squared_norm(diag(0, 3), diag(1, 3))
}
if (FALSE) { # reticulate::py_module_available("geomstats")
mt <- SPDMetricLogEuclidean$new(n = 3)
mt$norm(diag(0, 3), diag(1, 3))
}
if (FALSE) { # reticulate::py_module_available("geomstats")
# mt <- SPDMetricLogEuclidean$new(n = 3)
# mt$normalize(diag(2, 3), diag(1, 3))
}
if (FALSE) { # reticulate::py_module_available("geomstats")
# mt <- SPDMetricLogEuclidean$new(n = 3)
# mt$random_unit_tangent_vec(diag(1, 3))
}
if (FALSE) { # reticulate::py_module_available("geomstats")
mt <- SPDMetricLogEuclidean$new(n = 3)
mt$squared_dist(diag(1, 3), diag(1, 3))
}
if (FALSE) { # reticulate::py_module_available("geomstats")
mt <- SPDMetricLogEuclidean$new(n = 3)
mt$dist(diag(1, 3), diag(1, 3))
}
if (FALSE) { # reticulate::py_module_available("geomstats")
mt <- SPDMetricLogEuclidean$new(n = 3)
mt$dist(diag(1, 3), diag(1, 3))
}