Computes the Wasserstein distance matrix from a list of persistence diagrams.
Super classes
rgudhi::PythonClass
-> rgudhi::SKLearnClass
-> rgudhi::MetricStep
-> WassersteinDistance
Methods
Method new()
The WassersteinDistance
constructor.
Usage
WassersteinDistance$new(
order = 1,
internal_p = Inf,
mode = c("hera", "pot"),
delta = 0.01,
n_jobs = 1
)
Arguments
order
An integer value specifying the exponent of the Wasserstein distance. Defaults to
1.0
.internal_p
An integer value specifying the ground metric on the (upper-half) plane (i.e. the norm \(\ell_p\) in \(R^2\)). Defaults to
Inf
.mode
A string specifying the method for computing the Wasserstein distance. Choices are either
"pot"
or"hera"
. Defaults to"hera"
.delta
A numeric value specifying the relative error \(1+\delta\). Defaults to
0.01
. Used only ifmode == "hera"
.n_jobs
An integer value specifying the number of jobs to use for the computation. Defaults to
1L
.
Examples
if (FALSE) { # reticulate::py_module_available("gudhi")
X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
dis <- WassersteinDistance$new()
dis$apply(dgm, dgm)
dis$fit_transform(list(dgm))
}