Performs clustering according to the spectral coclustering algorithm
Source:R/sklearn-cluster.R
SpectralCoclustering.RdThis is a wrapper around the Python class sklearn.cluster.SpectralCoclustering.
Super classes
rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::BaseClustering -> SpectralCoclustering
Methods
Method new()
The SpectralCoclustering class constructor.
Usage
SpectralCoclustering$new(
n_clusters = 3L,
svd_method = c("randomized", "arpack"),
n_svd_vecs = NULL,
mini_batch = FALSE,
init = c("k-means++", "random"),
n_init = 10L,
random_state = NULL
)Arguments
n_clustersAn integer value specifying the number of biclusters to find. Defaults to
3L.svd_methodA string specifying the algorithm for finding singular vectors. May be
"randomized"or"arpack". If"randomized", usessklearn.utils.extmath.randomized_svd(), which may be faster for large matrices. If"arpack", usesscipy.sparse.linalg.svds(), which is more accurate, but possibly slower in some cases. Defaults to"randomized".n_svd_vecsAn integer value specifying the number of vectors to use in calculating the SVD. Corresponds to
ncvwhensvd_method == "arpack"andn_oversampleswhensvd_method == "randomized". Defaults toNULL.mini_batchA boolean value specifying whether to use mini-batch k-means, which is faster but may get different results. Defaults to
FALSE.initA string specifying the method for initialization of k-means algorithm. Choices are
"k-means++"or"random". Defaults to"k-means++".n_initAn integer value specifying the number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. Defaults to
10L.random_stateAn integer value specifying a pseudo random number generator used for the initialization of the
lobpcgeigenvectors decomposition wheneigen_solver == "amg", and for the k-means initialization. Defaults toNULLwhich uses clock time.