Performs clustering according to the spectral biclustering algorithm
Source:R/sklearn-cluster.R
SpectralBiclustering.RdThis is a wrapper around the Python class sklearn.cluster.SpectralBiclustering.
Super classes
rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::BaseClustering -> SpectralBiclustering
Methods
Method new()
The SpectralBiclustering class constructor.
Usage
SpectralBiclustering$new(
n_clusters = 3L,
method = c("bistochastic", "scale", "log"),
n_components = 6L,
n_best = 3L,
svd_method = c("randomized", "arpack"),
n_svd_vecs = NULL,
mini_batch = FALSE,
init = c("k-means++", "random"),
n_init = 10L,
random_state = NULL
)Arguments
n_clustersAn integer value or a length-2 vector specifying the number of row and column clusters in the checkerboard structure. Defaults to
3L.methodA string specifying the method of normalizing and converting singular vectors into biclusters. May be one of
"scale","bistochastic"or"log". The authors recommend using"log". If the data is sparse, however, log-normalization will not work, which is why the default is"bistochastic". Warning: ifmethod == "log", the data must not be sparse.n_componentsAn integer value specifying the number of singular vectors to check. Defaults to
6L.n_bestAn integer value specifying the number of best singular vectors to which to project the data for clustering. Defaults to
3L.svd_methodA string specifying the algorithm for finding singular vectors. May be
"randomized"or"arpack". If"randomized", usesrandomized_svd(), which may be faster for large matrices. If"arpack", usesscipy.sparse.linalg.svds(), which is more accurate, but possibly slower in some cases. Defaults to"randomized".n_svd_vecsAn integer value specifying the number of vectors to use in calculating the SVD. Corresponds to
ncvwhensvd_method == "arpack"andn_oversampleswhensvd_method == "randomized". Defaults toNULL.mini_batchA boolean value specifying whether to use mini-batch k-means, which is faster but may get different results. Defaults to
FALSE.initA string specifying the method for initialization of k-means algorithm. Choices are
"k-means++"or"random". Defaults to"k-means++".n_initAn integer value specifying the number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. Defaults to
10L.random_stateAn integer value specifying a pseudo random number generator used for the initialization of the
lobpcgeigenvectors decomposition wheneigen_solver == "amg", and for the k-means initialization. Defaults toNULLwhich uses clock time.