The data structure is a one skeleton graph, or Rips graph, containing edges when the edge length is less or equal to a given threshold. Edge length is computed from a user given point cloud with a given distance function, or a distance matrix.
See also
Other filtrations and reconstructions:
AlphaComplex,
TangentialComplex,
WitnessComplex
Methods
Method new()
RipsComplex constructor.
Usage
RipsComplex$new(data, max_edge_length = NULL, sparse = NULL)Arguments
dataEither a
n x dmatrix or a length-nlist ofd-dimensional vectors or a distance matrix stored as adistobject.max_edge_lengthA numeric value specifying the Rips value.
sparseA numeric value specifying the approximation parameter epsilon for buidling a sparse Rips complex. Defaults to
NULLwhich builds an exact Rips complex.
Method create_simplex_tree()
Arguments
max_dimensionAn integer value specifying the maximal dimension which the Rips complex will be expanded to.
Returns
A SimplexTree object storing the computed simplex
tree.
Examples
if (FALSE) { # reticulate::py_module_available("gudhi")
X <- seq_circle(10)
rc1 <- RipsComplex$new(data = X, max_edge_length = 1)
Xm <- Reduce(rbind, X, init = numeric())
rc2 <- RipsComplex$new(data = Xm, max_edge_length = 1)
D <- dist(Xm)
rc3 <- RipsComplex$new(data = D)
}
if (FALSE) { # reticulate::py_module_available("gudhi")
X <- seq_circle(10)
rc <- RipsComplex$new(data = X, max_edge_length = 1)
st <- rc$create_simplex_tree(1)
}