The data structure is a one skeleton graph, or Rips graph, containing edges when the edge length is less or equal to a given threshold. Edge length is computed from a user given point cloud with a given distance function, or a distance matrix.
See also
Other filtrations and reconstructions:
AlphaComplex
,
TangentialComplex
,
WitnessComplex
Methods
Method new()
RipsComplex
constructor.
Usage
RipsComplex$new(data, max_edge_length = NULL, sparse = NULL)
Arguments
data
Either a
n x d
matrix or a length-n
list ofd
-dimensional vectors or a distance matrix stored as adist
object.max_edge_length
A numeric value specifying the Rips value.
sparse
A numeric value specifying the approximation parameter epsilon for buidling a sparse Rips complex. Defaults to
NULL
which builds an exact Rips complex.
Method create_simplex_tree()
Arguments
max_dimension
An integer value specifying the maximal dimension which the Rips complex will be expanded to.
Returns
A SimplexTree
object storing the computed simplex
tree.
Examples
if (FALSE) { # reticulate::py_module_available("gudhi")
X <- seq_circle(10)
rc1 <- RipsComplex$new(data = X, max_edge_length = 1)
Xm <- Reduce(rbind, X, init = numeric())
rc2 <- RipsComplex$new(data = Xm, max_edge_length = 1)
D <- dist(Xm)
rc3 <- RipsComplex$new(data = D)
}
if (FALSE) { # reticulate::py_module_available("gudhi")
X <- seq_circle(10)
rc <- RipsComplex$new(data = X, max_edge_length = 1)
st <- rc$create_simplex_tree(1)
}