Skip to contents

Computes the persistence weighted Gaussian kernel matrix from a list of persistence diagrams. The persistence weighted Gaussian kernel is computed by convolving the persistence diagram points with weighted Gaussian kernels. See http://proceedings.mlr.press/v48/kusano16.html for more details.

Author

Mathieu Carrière

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::KernelRepresentationStep -> PersistenceWeightedGaussianKernel

Methods

Inherited methods


Method new()

The PersistenceWeightedGaussianKernel constructor.

Usage

PersistenceWeightedGaussianKernel$new(
  bandwidth = 1,
  weight = ~1,
  kernel_approx = NULL,
  n_jobs = 1
)

Arguments

bandwidth

A numeric value specifying the bandwidth of the Gaussian kernel with which persistence diagrams will be convolved. Defaults to 1.0.

weight

A function or a formula coercible into a function via rlang::as_function() specifying the weight function for the persistence diagram points. Defaults to the constant function ~ 1. This function must be defined on 2D points, i.e. lists or arrays of the form \([p_x,p_y]\).

kernel_approx

A Python class specifying the kernel approximation class used to speed up computation. Defaults to NULL. Common kernel approximations classes can be found in the scikit-learn library (such as RBFSampler for instance).

n_jobs

An integer value specifying the number of jobs to use for the computation. Defaults to 1.

Returns

An object of class PersistenceWeightedGaussianKernel.


Method clone()

The objects of this class are cloneable with this method.

Usage

PersistenceWeightedGaussianKernel$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

if (FALSE) { # reticulate::py_module_available("gudhi")
X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
pwgk <- PersistenceWeightedGaussianKernel$new()
pwgk$apply(dgm, dgm)
pwgk$fit_transform(list(dgm))
}