Kernel Representation: Persistence Sliced Wasserstein Kernel
Source:R/representation-kernel-methods.R
PersistenceSlicedWassersteinKernel.Rd
Computes the sliced Wasserstein kernel matrix from a list of persistence diagrams. The sliced Wasserstein kernel is computed by exponentiating the corresponding sliced Wasserstein distance with a Gaussian kernel. See http://proceedings.mlr.press/v70/carriere17a.html for more details.
Super classes
rgudhi::PythonClass
-> rgudhi::SKLearnClass
-> rgudhi::KernelRepresentationStep
-> PersistenceSlicedWassersteinKernel
Methods
Inherited methods
rgudhi::PythonClass$get_python_class()
rgudhi::PythonClass$set_python_class()
rgudhi::SKLearnClass$get_params()
rgudhi::SKLearnClass$set_params()
rgudhi::KernelRepresentationStep$apply()
rgudhi::KernelRepresentationStep$fit()
rgudhi::KernelRepresentationStep$fit_transform()
rgudhi::KernelRepresentationStep$transform()
Method new()
The PersistenceSlicedWassersteinKernel
constructor.
Usage
PersistenceSlicedWassersteinKernel$new(
num_directions = 10,
bandwidth = 1,
n_jobs = 1
)
Arguments
num_directions
An integer value specifying the number of lines evenly sampled from \([-\pi/2,\pi/2]\) in order to approximate and speed up the kernel computation. Defaults to
10L
.bandwidth
A numeric value specifying the bandwidth of the Gaussian kernel with which persistence diagrams will be convolved. Defaults to
1.0
.n_jobs
An integer value specifying the number of jobs to use for the computation. Defaults to
1
.
Examples
if (FALSE) { # reticulate::py_module_available("gudhi")
X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
pswk <- PersistenceSlicedWassersteinKernel$new()
pswk$apply(dgm, dgm)
pswk$fit_transform(list(dgm))
}