Kernel Representation: Persistence Fisher Kernel
Source:R/representation-kernel-methods.R
PersistenceFisherKernel.Rd
Computes the persistence Fisher kernel matrix from a list of persistence diagrams. The persistence Fisher kernel is computed by exponentiating the corresponding persistence Fisher distance with a Gaussian kernel. See papers.nips.cc/paper/8205-persistence-fisher-kernel-a-riemannian-manifold-kernel-for-persistence-diagrams for more details.
Super classes
rgudhi::PythonClass
-> rgudhi::SKLearnClass
-> rgudhi::KernelRepresentationStep
-> PersistenceFisherKernel
Methods
Inherited methods
rgudhi::PythonClass$get_python_class()
rgudhi::PythonClass$set_python_class()
rgudhi::SKLearnClass$get_params()
rgudhi::SKLearnClass$set_params()
rgudhi::KernelRepresentationStep$apply()
rgudhi::KernelRepresentationStep$fit()
rgudhi::KernelRepresentationStep$fit_transform()
rgudhi::KernelRepresentationStep$transform()
Method new()
The PersistenceFisherKernel
constructor.
Usage
PersistenceFisherKernel$new(
bandwidth_fisher = 1,
bandwidth = 1,
kernel_approx = NULL,
n_jobs = 1
)
Arguments
bandwidth_fisher
A numeric value specifying the bandwidth of the Gaussian kernel used to turn persistence diagrams into probability distributions by the
PersistenceFisherDistance
class. Defaults to1.0
.bandwidth
A numeric value specifying the bandwidth of the Gaussian kernel applied to the persistence Fisher distance. Defaults to
1.0
.kernel_approx
A Python class specifying the kernel approximation class used to speed up computation. Defaults to
NULL
. Common kernel approximations classes can be found in the scikit-learn library (such asRBFSampler
for instance).n_jobs
An integer value specifying the number of jobs to use for the computation. Defaults to
1
.
Examples
if (FALSE) { # reticulate::py_module_available("gudhi")
X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
pfk <- PersistenceFisherKernel$new()
pfk$apply(dgm, dgm)
pfk$fit_transform(list(dgm))
}