Metrics: Persistence Fisher Distance
Source:R/representation-metrics.R
PersistenceFisherDistance.RdComputes the persistence Fisher distance matrix from a list of persistence diagrams. The persistence Fisher distance is obtained by computing the original Fisher distance between the probability distributions associated to the persistence diagrams given by convolving them with a Gaussian kernel. See http://papers.nips.cc/paper/8205-persistence-fisher-kernel-a-riemannian-manifold-kernel-for-persistence-diagrams for more details.
Super classes
rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::MetricStep -> PersistenceFisherDistance
Methods
Method new()
The PersistenceFisherDistance constructor.
Usage
PersistenceFisherDistance$new(bandwidth = 1, kernel_approx = NULL, n_jobs = 1)Arguments
bandwidthA numeric value specifying the bandwidth of the Gaussian kernel applied to the persistence Fisher distance. Defaults to
1.0.kernel_approxA Python class specifying the kernel approximation class used to speed up computation. Defaults to
NULL. Common kernel approximations classes can be found in the scikit-learn library (such asRBFSamplerfor instance).n_jobsAn integer value specifying the number of jobs to use for the computation. Defaults to
1L.
Examples
if (FALSE) { # reticulate::py_module_available("gudhi")
X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
dis <- PersistenceFisherDistance$new()
dis$apply(dgm, dgm)
dis$fit_transform(list(dgm))
}