Skip to contents

Computes the bottleneck distance matrix from a list of persistence diagrams.

Author

Mathieu Carrière

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::MetricStep -> BottleneckDistance

Methods

Inherited methods


Method new()

The BottleneckDistance constructor.

Usage

BottleneckDistance$new(epsilon = NULL, n_jobs = 1)

Arguments

epsilon

A numeric value specifying the absolute (additive) error tolerated on the distance. Defaults to NULL, in which case the smallest positive float is used.

n_jobs

An integer value specifying the number of jobs to use for the computation. Defaults to 1L.

Returns

An object of class BottleneckDistance.


Method clone()

The objects of this class are cloneable with this method.

Usage

BottleneckDistance$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

if (FALSE) { # reticulate::py_module_available("gudhi")
X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
dis <- BottleneckDistance$new()
dis$apply(dgm, dgm)
dis$fit_transform(list(dgm))
}