Estimation of Two-Mark Planar DPPs via Maximum Likelihood
Usage
fit_via_mle(
X,
initial_guess = NULL,
fixed_marginal_parameters = FALSE,
model = "gauss",
optimizer = "bobyqa",
num_threads = 1,
N = 512,
verbose_level = 0
)
Arguments
- X
An object of class spatstat.geom::ppp specifying an observed planar determinantal point process.
- initial_guess
A numeric vector specifying an initial guess for the model parameters that maximize the likelihood. Defaults to
NULL
, which initializes at \(0.5\) all parameters after suitable transformation into \([0, 1]\). If provided, expected order isc(alpha1, alpha2, alpha12, tau)
.- fixed_marginal_parameters
A boolean value specifying whether the marginal parameters should be estimated separately using the marginal likelihood and then fixed to further estimate the cross parameters. Defaults to
FALSE
.- model
A string specifying a DPP model. Choices are
"gauss"
or"bessel"
. Defaults to"gauss"
.- optimizer
A string specifying one of the available derivative-free optimizers in NLOpt. Defaults to
"bobyqa"
.- num_threads
An integer value specifying the number of thread to run on. Defaults to
1L
.- N
An integer value specifying the maximum truncation index for Fourier transform. Defaults to
512L
.- verbose_level
An integer value specifying the display information during optimization. Choose
0L
for no information,1L
for global information at likelihood setup or2L
for detailed information at each function evaluation. Defaults to `0L.