Estimation of Two-Mark Planar DPPs via Maximum Likelihood
Usage
fit_via_mle(
X,
initial_guess = NULL,
fixed_marginal_parameters = FALSE,
model = "gauss",
optimizer = "bobyqa",
num_threads = 1,
N = 512,
verbose_level = 0
)Arguments
- X
An object of class spatstat.geom::ppp specifying an observed planar determinantal point process.
- initial_guess
A numeric vector specifying an initial guess for the model parameters that maximize the likelihood. Defaults to
NULL, which initializes at \(0.5\) all parameters after suitable transformation into \([0, 1]\). If provided, expected order isc(alpha1, alpha2, alpha12, tau).- fixed_marginal_parameters
A boolean value specifying whether the marginal parameters should be estimated separately using the marginal likelihood and then fixed to further estimate the cross parameters. Defaults to
FALSE.- model
A string specifying a DPP model. Choices are
"gauss"or"bessel". Defaults to"gauss".- optimizer
A string specifying one of the available derivative-free optimizers in NLOpt. Defaults to
"bobyqa".- num_threads
An integer value specifying the number of thread to run on. Defaults to
1L.- N
An integer value specifying the maximum truncation index for Fourier transform. Defaults to
512L.- verbose_level
An integer value specifying the display information during optimization. Choose
0Lfor no information,1Lfor global information at likelihood setup or2Lfor detailed information at each function evaluation. Defaults to `0L.